Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806893

RESUMO

SUMOylation is a highly dynamic ubiquitin-like post-translational modification that is essential for cells to respond to and resolve various genotoxic and proteotoxic stresses. Virus infections also constitute a considerable stress scenario for cells, and recent research has started to uncover the diverse roles of SUMOylation in regulating virus replication, not least by impacting antiviral defenses. Here, we review some of the key findings of this virus-host interplay, and discuss the increasingly important contribution that large-scale, unbiased, proteomic methodologies are making to discoveries in this field. We highlight the latest proteomic technologies that have been specifically developed to understand SUMOylation dynamics in response to cellular stresses, and comment on how these techniques might be best applied to dissect the biology of SUMOylation during innate immunity. Furthermore, we showcase a selection of studies that have already used SUMO proteomics to reveal novel aspects of host innate defense against viruses, such as functional cross-talk between SUMO proteins and other ubiquitin-like modifiers, viral antagonism of SUMO-modified antiviral restriction factors, and an infection-triggered SUMO-switch that releases endogenous retroelement RNAs to stimulate antiviral interferon responses. Future research in this area has the potential to provide new and diverse mechanistic insights into host immune defenses.


Assuntos
Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Sumoilação , Viroses , Humanos , Proteômica , Viroses/imunologia , Viroses/virologia , Replicação Viral
2.
FEBS J ; 288(5): 1630-1647, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790937

RESUMO

Signal transduction typically displays a so-called bow-tie topology: Multiple receptors lead to multiple cellular responses but the signals all pass through a narrow waist of central signaling nodes. One such signaling node for several inflammatory and oncogenic signaling pathways is the CARD-CC/BCL10/MALT1 (CBM) complexes, which get activated by protein kinase C (PKC)-mediated phosphorylation of the caspase activation and recruitment domain (CARD)-coiled-coil domain (CC) component. In humans, there are four CARD-CC family proteins (CARD9, CARD10, CARD11, and CARD14) and 9 true PKC isozymes (α to ι). At this moment, less than a handful of PKC::CARD-CC relationships are known. In order to explore the biologically relevant combinatorial space out of all 36 potential permutations in this two-component signaling event, we made use of CARD10-deficient human embryonic kidney 293T cells for subsequent pairwise cotransfections of all CARD-CC family members and all activated PKCs. Upon analysis of NF-κB-dependent reporter gene expression, we could define specific PKC::CARD-CC relationships. Surprisingly, as many as 21 PKC::CARD-CC functional combinations were identified. CARD10 was responsive to most PKCs, while CARD14 was mainly activated by PKCδ. The CARD11 activation profile was most similar to that of CARD9. We also discovered the existence of mixed protein complexes between different CARD-CC proteins, which was shown to influence their PKC response profile. Finally, multiple PKCs were found to use a common phosphorylation site to activate CARD9, while additional phosphorylation sites contribute to CARD14 activation. Together, these data reveal the combinatorial space of PKC::CARD-CC signal transduction nodes, which will be valuable for future studies on the regulation of CBM signaling.


Assuntos
Proteína 10 de Linfoma CCL de Células B/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , NF-kappa B/genética , Proteína Quinase C/genética , Sequência de Aminoácidos , Animais , Proteína 10 de Linfoma CCL de Células B/metabolismo , Sítios de Ligação , Proteínas Adaptadoras de Sinalização CARD/classificação , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Fosforilação , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/classificação , Proteína Quinase C/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transfecção
3.
Cell Immunol ; 340: 103877, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30514565

RESUMO

Antigen receptor-induced signaling plays an important role in inflammation and immunity. Formation of a CARD11-BCL10-MALT1 (CBM) signaling complex is a key event in T- and B cell receptor-induced gene expression by regulating NF-κB activation and mRNA stability. Deregulated CARD11, BCL10 or MALT1 expression or CBM signaling have been associated with immunodeficiency, autoimmunity and cancer, indicating that CBM formation and function have to be tightly regulated. Over the past years great progress has been made in deciphering the molecular mechanisms of assembly and disassembly of the CBM complex. In this context, several posttranslational modifications play an indispensable role in regulating CBM function and downstream signal transduction. In this review we summarize how the different CBM components as well as their interplay are regulated by protein ubiquitination and phosphorylation in the context of T cell receptor signaling.


Assuntos
Doenças Autoimunes/genética , Proteína 10 de Linfoma CCL de Células B/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Guanilato Ciclase/genética , Síndromes de Imunodeficiência/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Neoplasias/genética , Processamento de Proteína Pós-Traducional/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Proteína 10 de Linfoma CCL de Células B/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Guanilato Ciclase/imunologia , Humanos , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Fosforilação , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/patologia , Ubiquitinação
4.
Front Cell Dev Biol ; 6: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755980

RESUMO

CYLD is a deubiquitinating enzyme that plays a crucial role in immunity and inflammation as a negative regulator of NF-κB transcription factor and JNK kinase signaling. Defects in either of these pathways contribute to the progression of numerous inflammatory and autoimmune disorders. Therefore, we set out to unravel molecular mechanisms that control CYLD activity in the context of T cell receptor (TCR) signaling. More specifically, we focused on CYLD phosphorylation at Ser418, which can be detected upon immunoblotting of cell extracts with phospho(Ser418)-CYLD specific antibodies. Jurkat T cells stimulated with either anti-CD3/anti-CD28 or PMA/Ionomycin (to mimic TCR signaling) were used as a model system. The role of specific kinases was analyzed using pharmacological as well as genetic approaches. Our initial data indicated that CYLD is directly phosphorylated by the noncanonical IκB kinases (IKKs) IKKε and TANK Binding Kinase 1 (TBK1) at Ser418 upon TCR stimulation. Treatment with MRT67307, a small compound inhibitor for IKKε and TBK1, inhibited TCR-induced CYLD phosphorylation. However, the phospho(Ser418)-CYLD immunoreactive band was still present in CRISPR/Cas9 generated IKKε/TBK1 double knockout cell lines, where it could still be prevented by MRT67307, indicating that the initially observed inhibitory effect of MRT67307 on TCR-induced CYLD phosphorylation is IKKε/TBK1-independent. Most surprisingly, the phospho(Ser418)-CYLD immunoreactive band was still detectable upon immunoblotting of cell extracts obtained from CYLD deficient cells. These data demonstrate the non-specificity of MRT67307 and phospho(Ser418)-CYLD specific antibodies, implying that previously published results based on these tools may also have led to wrong conclusions. We therefore advise to use genetic knockout studies or alternative approaches for a better validation of antibodies and small compound inhibitors. Interestingly, immunoprecipitation with the phospho(Ser418)-CYLD antibody, followed by immunoblotting with anti-CYLD, revealed that CYLD is phosphorylated by IKKε/TBK1 at Ser418 upon T cell stimulation, but that its direct detection with the phospho(Ser418)-CYLD-specific antibody in a western blot is masked by another inducible protein of the same size that is recognized by the same antibody.

5.
Cell Death Differ ; 24(7): 1172-1183, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28362430

RESUMO

Polyubiquitination of proteins has a pivotal role in the regulation of numerous cellular functions such as protein degradation, DNA repair and cell signaling. As deregulation of these processes can result in pathological conditions such as inflammatory diseases, neurodegeneration or cancer, tight regulation of the ubiquitin system is of tremendous importance. Ubiquitination by E3 ubiquitin ligases can be counteracted by the activity of several deubiquitinating enzymes (DUBs). CYLD, A20 and OTULIN have been implicated as key DUBs in the negative regulation of NF-κB transcription factor-mediated gene expression upon stimulation of cytokine receptors, antigen receptors and pattern recognition receptors, by removing distinct types of polyubiquitin chains from specific NF-κB signaling proteins. In addition, they control TNF-induced cell death signaling leading to apoptosis and necroptosis via similar mechanisms. In the case of A20, also catalytic-independent mechanisms of action have been demonstrated to have an important role. CYLD, A20 and OTULIN have largely overlapping substrates, suggesting at least partially redundant functions. However, mice deficient in one of the three DUBs show significant phenotypic differences, indicating also non-redundant functions. Here we discuss the activity and polyubiquitin chain-type specificity of CYLD, A20 and OTULIN, their specific role in NF-κB signaling and cell death, the molecular mechanisms that regulate their activity, their role in immune homeostasis and the association of defects in their activity with inflammation, autoimmunity and cancer.


Assuntos
Enzimas Desubiquitinantes/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Morte Celular , Humanos , Modelos Biológicos , Ubiquitinação
6.
Methods Mol Biol ; 1449: 243-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27613040

RESUMO

Salmonella is a gram-negative facultative intracellular pathogen that is capable of infecting a variety of hosts. Inside host cells, most Salmonella bacteria reside and replicate within Salmonella-containing vacuoles. They use virulence proteins to manipulate the host cell machinery for their own benefit and hijack the host cytoskeleton to travel toward the perinuclear area. However, a fraction of bacteria escapes into the cytosol where they get decorated with a dense layer of polyubiquitin, which labels the bacteria for clearance by autophagy. More specifically, autophagy receptor proteins recognize the ubiquitinated bacteria and deliver them to autophagosomes, which subsequently fuse to lysosomes. Here, we describe methods used to infect HeLa cells with Salmonella bacteria and to detect their ubiquitination via immunofluorescence and laser scanning confocal microscopy.


Assuntos
Ubiquitina/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Bactérias/metabolismo , Bactérias/patogenicidade , Citosol/metabolismo , Citosol/microbiologia , Imunofluorescência , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Microscopia Confocal , Salmonella/metabolismo , Salmonella/patogenicidade , Ubiquitinação , Vacúolos/metabolismo , Vacúolos/microbiologia
7.
J Virol ; 88(6): 3369-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390337

RESUMO

UNLABELLED: RIG-I-like receptors (RLRs) MDA5 and RIG-I are key players in the innate antiviral response. Upon recognition of viral RNA, they interact with MAVS, eventually inducing type I interferon production. The interferon induction pathway is commonly targeted by viruses. How enteroviruses suppress interferon production is incompletely understood. MDA5 has been suggested to undergo caspase- and proteasome-mediated degradation during poliovirus infection. Additionally, MAVS is reported to be cleaved during infection with coxsackievirus B3 (CVB3) by the CVB3 proteinase 3C(pro), whereas MAVS cleavage by enterovirus 71 has been attributed to 2A(pro). As yet, a detailed examination of the RLR pathway as a whole during any enterovirus infection is lacking. We performed a comprehensive analysis of crucial factors of the RLR pathway, including MDA5, RIG-I, LGP2, MAVS, TBK1, and IRF3, during infection of CVB3, a human enterovirus B (HEV-B) species member. We show that CVB3 inhibits the RLR pathway upstream of TBK1 activation, as demonstrated by limited phosphorylation of TBK1 and a lack of IRF3 phosphorylation. Furthermore, we show that MDA5, MAVS, and RIG-I all undergo proteolytic degradation in CVB3-infected cells through a caspase- and proteasome-independent manner. We convincingly show that MDA5 and MAVS cleavages are both mediated by CVB3 2A(pro), while RIG-I is cleaved by 3C(pro). Moreover, we show that proteinases 2A(pro) and 3C(pro) of poliovirus (HEV-C) and enterovirus 71 (HEV-A) exert the same functions. This study identifies a critical role of 2A(pro) by cleaving MDA5 and MAVS and shows that enteroviruses use a common strategy to counteract the interferon response in infected cells. IMPORTANCE: Human enteroviruses (HEVs) are important pathogens that cause a variety of diseases in humans, including poliomyelitis, hand, foot, and mouth disease, viral meningitis, cardiomyopathy, and more. Like many other viruses, enteroviruses target the host immune pathways to gain replication advantage. The MDA5/MAVS pathway is responsible for recognizing enterovirus infections in the host cell and leads to expression of type I interferons (IFN-I), crucial antiviral signaling molecules. Here we show that three species of HEVs all employ the viral proteinase 2A (2A(pro)) to proteolytically target MDA5 and MAVS, leading to an efficient blockade upstream of IFN-I transcription. These observations suggest that MDA5/MAVS antagonization is an evolutionarily conserved and beneficial mechanism of enteroviruses. Understanding the molecular mechanisms of enterovirus immune evasion strategies will help to develop countermeasures to control infections with these viruses in the future.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cisteína Endopeptidases/metabolismo , RNA Helicases DEAD-box/metabolismo , Enterovirus Humano B/enzimologia , Infecções por Enterovirus/metabolismo , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Cisteína Endopeptidases/genética , RNA Helicases DEAD-box/genética , Enterovirus Humano B/genética , Enterovirus Humano B/fisiologia , Infecções por Enterovirus/enzimologia , Infecções por Enterovirus/genética , Infecções por Enterovirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Helicase IFIH1 Induzida por Interferon , Fosforilação , Proteólise , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...